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Abstract

Aversive experiences activate dedicated neural instructive

pathways which trigger memory formation and change

behavior. The strength of these aversive memories and the

degree to which they alter behavior is proportional to the

intensity of the aversive experience. Dysregulation of aversive

learning circuits can lead to psychiatric pathology. Here we

review recent findings elucidating aversive instructive signaling

circuits for fear conditioning. We then examine how chronic

pain as well as stress and anxiety disrupt these circuits and the

implications this has for understanding and treating psychiatric

disease. Together this review synthesizes current work on

aversive instructive signaling circuits in health and disease and

suggests a novel circuit based framework for understanding

pain and anxiety syndromes.
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Aversive experiences, such as those which are painful,

produce strong memories and shape behavior in adaptive

ways. For example, getting attacked by a dog while

walking in your neighborhood results in detailed, lifelong

memories of the experience and emotional responses

upon re-exposure to the situation where the attack

occurred. These conscious and emotional memories form

because aversive experiences are transduced by dedi-

cated neural pathways into ‘instructive’ signals which

alter connectivity in brain networks responsible for
www.sciencedirect.com 
storing memories resulting in aversive learning and adap-

tive changes in behavior.

In some clinical conditions aversive experiences produce

disproportionate and dysfunctional emotional responses

and memories. In chronic pain syndromes, for example,

somatosensory/pain pathways become sensitized result-

ing in debilitating psychological symptoms [1,2]. In anxi-

ety disorders such as post-traumatic stress disorder

(PTSD), chronic stress or trauma can sensitize aversive

learning circuits and produce strong, long lasting and

incapacitating emotional memories and responses

[3,4�,5]. Genetic and experiential factors are the root

cause of most psychiatric disorders including chronic pain

and anxiety. These factors produce psychiatric dysfunction

through actions on specific brain circuits. To understand

how psychiatric conditions emerge it is critically important

to identify the circuits which mediate normal function and

then determine how these systems are disrupted in disease

conditions. Related to chronic pain and anxiety disorders, a

potential underlying cause could be dysregulation of aver-

sive instructive signaling pathways by genetic and experi-

ential influences. This could result in exaggerated, persis-

tent aversive learning as well as more generalized anxiety

and depressed mood, symptoms which are characteristic of

pain and anxiety syndromes.

In this review we discuss recent work elucidating the

circuit mechanisms of aversive instructive signaling for

auditory fear conditioning. We then explore the hypoth-

esis that dysregulation of these instructive signaling cir-

cuits underlies chronic pain and anxiety disorders. We

focus on fear conditioning because most of the research

on aversive instructive circuits comes from this area and

these same circuits likely participate in other forms of

aversive learning. We note that the circuits underlying

fear conditioning mediate only one aspect of the aversive

experience [6] and further work on other forms of

aversive learning will likely be required to accurately

model human emotions/feelings and their psychiatric

dysfunction.

The lateral and central nuclei of the amygdala:
key sites of plasticity mediating fear learning
Auditory fear conditioning occurs when an auditory stim-

ulus (conditioned stimulus, CS) is associated with an

aversive outcome such as electrical shock (unconditioned

stimulus, US) [7,8]. Following learning, presentation

of the tone alone elicits a set of defensive responses
Current Opinion in Neurobiology 2018, 48:37–44
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Working model of aversive signaling pathways to the amygdala for fear

learning. During fear conditioning, auditory and aversive-nociceptive

pathways converge in lateral amygdala (LA) pyramidal neurons (inset).

Auditory input synapses are strengthened (denoted by yellow *) through a

parallel hebbian/neuromodulatory mechanism involving activity in the

auditory inputs, depolarization of postsynaptic pyramidal neurons by the

shock and noradrenaline signaling. Aversive US information (left image)

originating from peripheral nociceptive receptors reaches spinal or

trigeminal dorsal horn, and is then relayed to PAG, LC, PB, and other

brain regions. The PAG and PB may act as relays or modulators of

aversive signals to LA/BA and CeA, through either monosynaptic

(PB–CeA) or multi-synaptic connections (PAG–LA/B). In addition, the

neuromodulatory inputs (from LC and NBM) onto LA/BA networks, along

with local inhibitory interneurons (PV+ and SOM+ interneurons, inset),

regulate the sensory-evoked activity and plasticity of LA/BA pyramidal

neurons. Dotted lines indicate hypothetical functional/anatomical circuits,

solid lines indicate established functional/anatomical pathways. LA/BA:

lateral and basal nuclei of the amygdala; CeA: central nucleus of

amygdala; CeL: central nucleus of amygdala, lateral division; CeM:

central nucleus of amygdala, medial division; PV+: parvalbumin-

expressing; SOM+: somatostatin-expressing; NBM: nucleus basalis of

meynert; dl/l PAG: dorsolateral/lateral subregion of the periaqueductal

grey; vlPAG: ventrolateral subregion of periaqueductal grey; LC: locus

coeruleus; PB: parabrachial nucleus.
including behavioral freezing and changes in heart rate

and blood pressure. The amygdala has emerged as a

critical site of synaptic plasticity mediating fear learning

(Figure 1), though there are likely other brain regions in

the circuit which undergo plasticity [9–11]. Neurons in

the lateral nucleus of the amygdala (LA) integrate audi-

tory information from the thalamus and cortex with

aversive nociceptive and neuromodulatory signals. Dur-

ing fear conditioning auditory thalamic and cortical inputs

to LA (and possibly the basal nucleus of the amygdala,

BA) are strengthened such that tone presentation alone

following learning activates LA neurons to produce fear

responses through output pathways in the central nucleus

of the amygdala (CeA) (for recent reviews see [9,11–13]).

Plasticity of LA inputs to the CeA also occurs during fear

conditioning [14,15], possibly providing a gating mecha-

nism for parallel plasticity occurring in the LA.

Instructive signals in the lateral amygdala for
fear learning
Because plasticity mediating fear conditioning occurs in

the LA, it is important to consider the signals within

this nucleus which initiate plasticity and fear learning

(Figure 1). In LA pyramidal neurons, aversive shock-

evoked activity is necessary for strengthening auditory

(and olfactory) synapses in LA as well as fear learning and

local GABAergic mechanisms are important in regulating

this process [16–18]. However, under normal learning

conditions activation of LA pyramidal neurons is not

sufficient to produce fear conditioning or plasticity unless

b-adrenergic receptors (b-ARs) are co-activated [16,19].

Together, this suggests that parallel depolarizing and

noradrenergic signals trigger neural plasticity in LA and

fear learning.

In addition to noradrenaline, other neuromodulators such

as acetylcholine and dopamine are important in fear

learning [20��,21]. However, the mechanisms through

which neuromodulators regulate plasticity are not known

and could include direct modulation of intracellular sig-

naling in pyramidal neurons and/or heterosynaptic control

of pyramidal cell activity through local GABAergic net-

works [22,23]. Furthermore, it is unclear where many of

these signals originate or what kinds of information they

transmit to LA. Targeted manipulations of cellular level

processes and recordings of amygdala projecting neuro-

modulatory cells could help determine the information

conveyed to the amygdala by these neuromodulatory

systems and how they control plasticity in LA.

Another important point to consider is that these intra-

amygdala signals likely regulate plasticity in specific

populations of LA/BA neurons. Recent studies have

demonstrated functionally distinct aversive, rewarding

and safety cell populations in the BA [24–28]. Further-

more, varying levels of intracellular signaling molecules

such as CREB and cellular excitability can modulate
Current Opinion in Neurobiology 2018, 48:37–44 www.sciencedirect.com
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Predictive cues recruit a feedback circuit which calibrates the strength

of fear learning. During fear conditioning, shock-evoked neuronal

responses decrease in dl/lPAG and LA/BA neurons, thereby reducing

the ability of the aversive US to produce learning. After a certain

amount of training animals reach the learning asymptote where further

tone-shock pairings do not produce more learning (i.e. higher freezing

responses) (solid line, upper-right inset) unless the shock intensity is

increased (dashed line, upper-right inset). This occurs because the

auditory predictive cue recruits a feedback pathway through CeA–

vlPAG–RVM (blue lines) which functions to inhibit aversive instructive

signaling circuits (red lines) and set behavioral learning asymptotes.

Inhibition of this feedback pathway leads to excessive fear responding

to the predictive cues (dashed line, upper-right inset) much like

increasing the shock intensity. Dotted lines indicate functionally

hypothetical circuits in the context of fear learning. RVM:

rostroventromedial medulla.
which neuronal populations in the LA are recruited

during fear learning to produce fear responses at memory

recall [29–32]. This cell-to-cell variability could be due to

randomly fluctuating basal levels of CREB/excitability

and/or result from cell type specific regulation of CREB

expression/excitability by extrinsic factors such as neu-

romodulators. Differences in these processes between

cells could modulate which neurons respond to shocks

and tones and/or their ability to undergo plasticity. It will

be important in future work to determine the mechanisms

which define whether a given cell population participates

in aversive, reward or safety learning and how intracellular

signaling and extrinsic inputs contribute to plasticity in

defined amygdala cell populations.

Aversive instructive signaling pathways to the
LA are coordinated with negative feedback
systems
The neural pathways which convey aversive shock infor-

mation to depolarize LA neurons are not completely

elucidated [33–35]. However, there is evidence that

the midbrain periaqueductal grey (PAG) is important

as a relay or modulator of aversive US signals to the

LA [36,37��] (Figure 1). The PAG receives dense inner-

vation from the spinal cord dorsal horn and inactivation of

the PAG reduces shock-evoked responding in LA neu-

rons and fear learning [36,38]. Furthermore, pairing stim-

ulation of the dorsolateral/lateral subregion of the PAG

(dl/lPAG) as a US with an auditory CS is sufficient to

produce fear learning and this effect is dependent on

neural activity in the LA [39]. However, the subregions/

cell types in PAG responsible for this and the final

afferent pathway(s) to the LA are not known.

During learning, aversive responses in LA and PAG

neurons become inhibited as the auditory cue comes to

predict the occurrence of the shock [36,40] (Figure 2).

While the dl/lPAG may be important for transmitting

aversive information to the LA, a descending feedback

pathway from the CeA to the ventrolateral PAG (vlPAG)

negatively regulates this ascending aversive signaling

circuit to inhibit predicted aversive responses [37��]. This

CeA-vlPAG pathway engages a specific population of

vlPAG cells which project to a pain modulatory brainstem

region called the rostroventromedial medulla (RVM).

Auditory CS activation of this circuit controls the maximal

strength of fear learning (learning asymptote) that occurs

with extended training. These results are consistent with

other pharmacological studies implicating endogenous

analgesia systems in fear conditioning and specifically

in controlling the strength of fear learning [41–43]. To-

gether, this suggests that the learning dependent inhibi-

tion of signaling in dl/lPAG and LA occurs through the

engagement of descending pain modulatory systems and

conditioned analgesia which then sets the strength of fear

memories.
www.sciencedirect.com 
Neuromodulatory pathways to the LA
While many neuromodulatory systems have been impli-

cated in fear conditioning using anatomical tracing and

pharmacological approaches, the functionally relevant

circuits which provide direct neuromodulatory signals

to modulate LA/BA networks and plasticity are not well

understood. In the case of noradrenaline, the LA receives

input from various brainstem noradrenaline centers

including the locus coeruleus (LC) [44] (Figure 1). LC

lesions in some conditions reduce fear conditioning, but

the evidence for this is somewhat mixed [44]. Stimulation

of LC inhibits LA/BA neurons in anesthetized animals,

though these effects are dependent on which amygdala

ARs are activated and the method of stimulation [45,46].

For example, in some conditions LC stimulation or direct

noradrenaline application can excite or disinhibit pyrami-

dal neurons [45–49] and activation of optically sensitive

b-ARs can directly excite them [50]. These discrepancies

in behavioral and physiological experiments could be

resolved using cell type specific and terminal manipula-

tion techniques in awake, behaving animals.
Current Opinion in Neurobiology 2018, 48:37–44
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Figure 3
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Aversive instructive signaling pathways are disrupted in chronic pain

conditions. In ascending pain pathways (red lines), rodent chronic pain

models produce synaptic potentiation of the parabrachial nucleus

(PB)-to-the central nucleus of the amygdala (CeA) synapses, lateral/

basal nucleus of the amygdala (LA/BA)-to-CeA synapses and LA-to-

BA synapses. Chronic pain conditions also upregulate pro-nociceptive

RVM neurons which ultimately reduce rostroventromedial medulla

(RVM)-to-spinal cord descending analgesia systems (dotted pale blue

line), potentially reducing the effectiveness of predictive negative

feedback systems (blue lines) to control learning strength.
Using an optogenetic circuit based approach, a role of

ACh innervation of LA was recently explored [20��] using

cell type specific manipulations of nucleus basalis of

meynert acetylcholine (NBM-ACh) inputs to the BA

(Figure 1). The authors found that inhibition of the term-

inals of NBM-ACh cells in the BA throughout auditory fear

conditioning reduced fear learning. Stimulation of these

ACh inputs did not enhance learning, but did make fear

memories more resistant to extinction. In addition they

found that optical stimulation of ACh-BA terminals pro-

longed excitation of BA pyramidal neurons. This suggests

that the NBM-ACh inputs to BA may enhance the excit-

ability of BA neurons and thereby facilitate fear learning.

Aversive instructive signaling pathways to the
CeA
Related to the neural circuits conveying aversive shock

information to the CeA, classical anatomical/physiological

work demonstrated a nociceptive specific pathway from

the superficial layers of the spinal cord dorsal horn to the

parabrachial nucleus (PB) and from there to the lateral/

capsular portion of the CeA [51] (Figure 1). Two recent

studies [52��,53��] directly manipulated this pathway and

found that it is important for fear learning. Stimulation of

PB neurons (and, specifically, calcitonin gene-related

peptide (CGRP) expressing PB cells) is sufficient as a

US to produce context and tone fear conditioning. Fur-

thermore, inactivation of PB cells reduces fear learning.

One of these studies [53��] also examined the cell types in

the CeA which receive PB input and identified a popula-

tion of CGRP-receptor expressing neurons that overlap

with other known CeA cell types (protein kinase C-d
(PKC-d) in the more posterior CeA and a bit with SOM

expressing cells). Stimulation or inhibition of these cells

produced or reduced, respectively, fear learning. What is

still unclear is whether PB inputs regulate local plasticity

in CeA SOM cells and, if so, what information is conveyed

by the inputs that are strengthened.

Together the current data support the idea that multiple

parallel circuits convey aversive information to different

subregions of the amygdala (Figure 1). A spinal-PB path-

way is important for conveying aversive shock informa-

tion to the CeA and a multicomponent set of pathways

including the PAG and neuromodulatory systems trans-

mit aversive information to the LA.

Disruption of aversive instructive signaling
and feedback circuits in chronic pain
conditions
Chronic pain syndromes are associated with emotional

suffering and avoidance behaviors as a result of a sensi-

tized pain system. This sensitization is due in part to

neuroplastic changes occurring at the level of the spinal

cord [54]. However, given the affective nature of chronic

pain symptomology, another contributing factor could be

changes occurring specifically in aversive instructive
Current Opinion in Neurobiology 2018, 48:37–44 
signaling pathways and in the feedback systems that

control these circuits [2,55,56�] (Figure 3). Supporting

this idea, synaptic strengthening of PB and LA/BA inputs

to the CeA as well as changes in excitability of CeA

neurons occurs in various rodent chronic pain models

[57–59]. Possibly related to the involvement of CGRP

expressing PB inputs to CeA in fear learning, blockade of

CGRP receptors in CeA following induction of chronic

pain reversed the plasticity at PB-to-CeA synapses [60].

Chronic pain models also induce synaptic potentiation of

LA-to-BA synapses and enhanced responsiveness of BA
www.sciencedirect.com
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Figure 4
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Stress induced dysregulation of neuromodulatory circuits controlling

fear and anxiety. Stress increases neuronal activity in the locus

coeruleus (LC) through recruitment of corticotropin-releasing factor

(CRF)-positive neurons in the central nucleus of the amygdala (CeA)

and CRF release in the LC. Increases in NA release could exaggerate

fear learning by enhancing plasticity in the lateral/basal nucleus of the

amygdala (LA/BA). Stress upregulates the dorsal raphe (DR)-serotonergic

system by increasing the expression of 5-hydroxytryptamine (5-HT)

2-receptors in the LA/BA leading to heightened fear memory

consolidation following stress. Dotted lines indicate hypothetical

functional/anatomical circuits, solid lines indicate established

functional/anatomical pathways.
neurons to innocuous and noxious stimuli [56�,61].
Although the effects on fear conditioning were not

assayed, chronic pain induction produced hyperalgesia

as well as increased vocalizations and anxiety-like behav-

ior [61–63]. These effects were blocked when the

enhanced synaptic strength in the LA-BA and PB-CeA

synapses was pharmacologically reversed, directly linking

the pain induced synaptic changes in the amygdala to

clinically relevant behavioral alterations.

Chronic pain induced dysregulation of descending pain

modulatory systems could also underlie psychological

aspects of pain syndromes (Figure 3). The PAG-RVM-

spinal cord circuit contains pro and anti-nociceptive cell

populations [64]. The balance of activity across these

opposing cell populations has been proposed to control

the sensitivity of nociceptive processing in the spinal and

trigeminal dorsal horn neurons [64,65]. Pain facilitatory

RVM neurons expressing the mu-opiate receptor are

necessary for the maintenance of chronic pain [66], sug-

gesting that chronic pain conditions preferentially engage

pro-nociceptive RVM subcircuits. If the feedback sys-

tems regulating prediction error coding recruit this circuit

as evidence suggests [37��], chronic pain induced shifts

from negative to positive feedback in this system would

serve to enhance aversive instructive signaling and

increase the strength of aversive learning.

Dysregulation of aversive instructive circuits
by stress and anxiety
Anxiety syndromes are characterized by exaggerated and

persistent aversive learning as well as dysregulation of

amygdala-associated networks following traumatic experi-

ences or chronic stress [3,4�]. Similar to chronic pain syn-

dromes, a causal factor in the development and maintenance

of anxiety disorders could be disrupted aversive instructive

signaling circuits. No studies to date have examined

whether the PAG/PB circuits or negative feedback systems

associated with them are dysfunctional in anxiety disorders.

However, given the importance of these systems in initiat-

ing and modulating the strength of fear memories, an

examination of this question is critically important.

Sensitization of the noradrenaline system in anxiety dis-

orders has received relatively more attention [4�,67,68].
Anxiety disorder patients exhibit increased sensory

evoked (and possibly basal) noradrenaline release and

heightened noradrenaline levels during sleep relative to

wakefulness [69–72]. Consistent with the idea that the

noradrenaline system is sensitized in anxiety disorder

patients, administration of an antagonist to the a-2-AR
(a noradrenaline autoreceptor) which can increase ongoing

noradrenaline release, produces strong anxiety symptoms in

anxiety disorder patients, but not in healthy controls [73].

A sensitized noradrenaline system could directly contrib-

ute to anxiety disorder pathology by over-engaging
www.sciencedirect.com 
amygdala dependent fear learning and consolidation/

reconsolidation mechanisms during traumatic experi-

ences and sleep (Figure 4). Supporting this idea, aug-

menting b-AR signaling in the LA/BA increases fear

learning, fear memory consolidation/reconsolidation and

anxiety related behaviors [16,50,74–77]. If the LC is

important in supplying noradrenaline to the amygdala

and in triggering fear memories, then an upregulation in

LC-noradrenaline activity could produce exaggerated

and persistent fear learning. Paralleling the human con-

dition, various stressors induce higher tonic firing in LC

neurons and, in some cases, increase aversive stimulus

evoked responses [78,79,80��]. This stress-induced

enhancement of LC responsivity could arise through
Current Opinion in Neurobiology 2018, 48:37–44
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CeA-corticotropin-releasing factor (CRF) innervation of

LC. CRF administration in awake, behaving animals is

accompanied by increased LC activity and stress-elicited

LC activation requires CRF signaling [78,81,82]. Suggesting

a functional role for enhanced LC-noradrenaline signaling

during anxiety through CeA-CRF activity, an interesting

recent study showed that stress-induced enhancement of

anxiety occurs through an increase in LC-tonic activity

mediated by CeA-CRF innervation of LC [80��].

Another recent study [83��] implicated the serotonin

system in heightened fear learning following stress

(Figure 4). The authors found that stress produced an

increase in fear learning and 5-HT2-receptor expression,

but not serotonin release, in the LA/BA. The stress

induced increase in fear learning was dependent on

5-HT2-receptor signaling in LA/BA and shock-evoked

activity in serotonin neurons in the dorsal raphe

nucleus. Interestingly, this system did not appear to

be important for fear learning under normal learning

conditions in the absence of stress.

Conclusions
Our understanding of the neural circuitry of aversive

instructive signaling during fear conditioning is rapidly

expanding due to modern, circuit based technical

approaches. These studies suggest that parallel neuro-

modulatory and excitatory pathways to distinct subre-

gions of the amygdala trigger fear learning and that these

systems are coupled with feedback mechanisms which

regulate the strength of fear memories. Under conditions

of chronic pain, stress or anxiety, these aversive signaling

circuits can become dysregulated leading to exaggerated

and persistent aversive emotional memories and poten-

tially to debilitating psychiatric dysfunction. Fully eluci-

dating these aversive instructive systems and understand-

ing how they are altered in disease conditions could lead

to novel approaches for the treatment of chronic pain and

anxiety disorders.
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