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To enhance their chance of survival, animals learn to make predic-
tions based on sensory cues in their environment. However, it is not 
clear how they identify stimuli that are relevant for specific predic-
tions and how they distinguish coincidences between environmental 
events from actual predictive relationships. If an outcome occurs both 
in the presence and the absence of a cue, for example, a contingent 
and therefore predictive relationship between the two is no longer 
obvious. An understanding of how the brain assesses such ambigu-
ity in cue–outcome relationships is missing, and most accounts of 
animal learning confound ambiguity in the environment’s statisti-
cal structure (that is, which relationships are predictive or causal in 
the environment) and uncertainty about the strength of established 
associations (for example, the probability with which an outcome 
follows a predictive cue).

We investigated how animals assess ambiguous predictive rela-
tionships using classical threat conditioning. In this model animals 
come to display defensive responses to stimuli predicting dangerous 
or aversive events after pairings of an initially neutral conditioned 
stimulus (CS), such as a tone, and a biologically salient unconditioned 
stimulus (US), such as a mild footshock1–4. Humans and non-human 
animals alike show graded contingency learning, depending on how 
well a given outcome is predicted by a sensory cue. In particular, 
rodents are known to exhibit reduced conditioning to a tone–CS if 
footshocks are presented both in the presence and absence of the tone, 
a phenomenon known as ‘contingency degradation’5.

The prevailing interpretation explains contingency degradation in 
terms of cue competition6–8, where multiple cues compete for the 
ability to predict an outcome by partitioning a limited associative 

strength. For example, it is thought that during contingency degra-
dation a strong association formed between the conditioning con-
text and the shock reduces subsequent learning of the tone–shock 
association. This process is referred to as contextual blocking5,9 and 
is thought to be implemented in the brain through attenuation of 
US processing during tone–shock pairings when the US is already 
predicted by the context3,10. Alternatively, a strong contextual asso-
ciation could be competing with the tone–CS at the time of memory 
expression8. Either type of cue competition, however, would rely on 
contextual learning, a hippocampus-dependent process.

Cue competition can be problematic under some circumstances 
because it assesses the ambiguity of predictive relationships only indi-
rectly: instead of checking for dependencies between variables and 
learning statistical structure by evaluating different models of the envi-
ronment, it sidesteps model selection and learns associations between 
any contiguous cue–outcome pair in a competitive manner.

Suggesting a different view, a previous in vitro study11 found that 
the cellular-level process thought to underlie aversive memory storage 
in the lateral amygdala (LA) is itself sensitive to stimulus contingen-
cies. Thus the brain might possess neural mechanisms at the level 
of the amygdala to evaluate contingencies between environmental 
stimuli, without relying on cue competition.

However, to make predictions in a statistically principled way from 
a small number of observations, the learning mechanism also needs 
to take into account the overall pattern of events in the environment 
and account for possibly complex interactions between the different 
cue–outcome associations. While there is strong evidence that sen-
sory cues become associated with aversive (or rewarding) outcomes 
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Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains 
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a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we 
introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence 
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through strengthening of sensory input synapses in the LA during 
associative learning1–4, a principled learning strategy must go beyond 
evaluating single cue–outcome contingencies in isolation.

An understanding of both the learning strategy animals use on 
the computational level and of the neural circuitry involved is thus 
critical for identifying the circuit mechanisms and algorithmic level 
processes that could implement contingency evaluations in the face of 
ambiguity. Here we used a combination of behavioral and computa-
tional approaches together with optogenetics, electrophysiology and 
pharmacology to address these questions. We found that cue com-
petition is not necessary for contingency degradation and does not 
give a satisfactory explanation of this phenomenon. Instead, animals’ 
behavior is best explained by models that evaluate the overall statisti-
cal structure of the environment. Furthermore, we demonstrate that 
the amygdala tracks contingency changes in the environment, and we 
reveal that it is important in resolving ambiguity during learning.

RESULTS
Contingency evaluation independently of cue competition
We first determined whether predictions of the cue-competition 
models were supported when ambiguity in the ability of a given CS 
to predict the US was high. To test this, we first examined trial order 
sensitivity and the relationship between context and CS memory 
strength by varying the order of CS–US pairings and unsignaled USs 
(UUSs). Animals were given either three massed tone–shock pair-
ings before, or three spaced tone–shock pairings intermixed with,  
12 unsignaled shocks (both with 20% contingency) and were tested for 
aversive memories by measuring contextual and tone-evoked freezing 
24 h later (Fig. 1a,b). Control I and II animals were given three CS–
US pairings only (100% contingency). The control I group received 
three CS–US pairings spaced identically to those in the intermixed 
protocol but with all UUSs omitted. The control II group received 
massed CS–US pairings spaced identically to those in the pairings-
first group, with the subsequent UUSs omitted, and conditioning 
terminated after the third CS–US pairing (Fig. 1b). Animals showed 
similar levels of tone-evoked freezing in both reduced-contingency  
conditions, and these freezing levels were significantly lower than 
for control animals (Fig. 1c and Supplementary Fig. 1). Animals 
were therefore sensitive to the ambiguity of the CS–US relationship 
and demonstrated the ability to integrate contingency information 
irrespective of the temporal order of training trials, contradicting a 

traditional cue-competition-based ‘contextual blocking’ account of 
contingency degradation.

Cue competition could also account for contingency degradation 
beyond such a forward blocking account. Some learning models sug-
gest competition between associations at the time of memory retrieval10 
or trial-order-independent cue completion based on statistical learn-
ing principles, such as when learning strength parameters for predic-
tive cues or causes in a predetermined generative model of the US12. 
However, we observed a reduction in CS memory strength between the 
pairings-first and control II groups without a corresponding change 
in context memory strength (Fig. 1d). This was also true upon time-
binned analysis and when using a more salient conditioning context 
(Supplementary Fig. 2a,b). This suggests that competition, where a 
strong contextual association would suppress tone-evoked responding 
at the time of memory retrieval, also fails to account for contingency 
learning. Thus while under some circumstances there can be an appar-
ent inverse relationship between the different cue–outcome associations 
(notably in the case of the spaced condition, where the low rate of shock 
delivery in the control I group results in low context freezing), this is not 
generally the case, and in particular is not necessary for the animals to 
learn a degraded tone–shock contingency. Looking at individual ani-
mals, we also observed that the correlation between tone and context 
freezing was positive in all four conditions (Supplementary Fig. 1).

To better understand the influence of contextual associations on 
learning the tone–shock contingency and to directly test for cue com-
petition during learning and/or retrieval, we next infused the NMDA-
receptor antagonist 2-amino-5-phosphonovalerate (APV) into the 
dorsal hippocampus before conditioning (Fig. 2a), a manipulation 
known to block the formation of contextual memories13. Consistent 
with previous results using a different procedure14, this interven-
tion had no effect on contingency degradation, despite significantly 
impairing contextual learning both in the spaced and the massed con-
ditions (Fig. 2b–e). This provided further evidence that contingency 
degradation of auditory threat memories does not depend on com-
petition between auditory and contextual cues, whether information  
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Figure 1 Reduced CS–US contingency results in reduced CS memory, 
irrespective of trial order and with or without changes in context memory.  
(a) Experimental design. Animals underwent threat conditioning on day 1 
and were tested for contextual and tone (or tone and contextual) memories 
24 h later. (b) Conditioning protocols. Rats received sequences  
of tone–shock pairings (P) and unsignaled shocks (U), or tone–shock 
pairings only. The boxes indicate time spent in the conditioning chamber: 
~7 min for control II group and ~31 min for all other groups. (c) A 20% 
CS–US contingency during conditioning leads to significantly lower 
CS–induced freezing than a 100% contingency, whether unpaired shocks 
are given intermixed with or after tone–shock pairings (n = 22, 22, 17, 18, 
two-way ANOVA, no significant interaction F1,75 = 1.63, P = 0.21, main 
effect for contingency F1,75 = 18.02, *P = 0.00006, simple effects for 
contingency F1,75 = 15.0, P = 0.0002; F1,75 = 4.48, P = 0.038 for control 
I vs. intermixed and control II vs. pairings first, respectively).  
(d) Context memory strengths for the same animals. Reduction of CS memory 
with degraded CS–US contingency is not explained by changes in context 
memory strengths, as there was no difference between context memories of 
control II and pairings-first groups (two-way ANOVA, significant interaction 
F1,75 = 6.44, P = 0.013, simple effect for contingency F1,75 = 0.00008,  
P = 0.81, not significant; F1,75 = 10.65, *P = 0.001, for control II vs. pairings 
first and control I vs. intermixed, respectively). Error bars indicate s.e.m.
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about the reduced tone–shock contingency is delivered after tone– 
shock pairings or the different types of shocks are intermixed  
(Fig. 2d,e). We further validated these results by comparing an alter-
native measure of threat response (defecation) in the spaced con-
dition and found that it paralleled our results measuring freezing 
(Supplementary Fig. 3).

We also verified that the observed decrements in the tone-evoked 
responding were not due simply to delivering a larger number of 
shock USs (so-called ‘reinforcer devaluation’). Groups of animals 
that received 15 or 21 tone–shock pairings (Supplementary Fig. 4a) 
displayed similarly high levels of tone freezing, indicating that learn-
ing the tone–shock association was at a stable asymptote and that the 
larger number of footshocks did not lead to a devaluation of this US. 
Further, if, instead of delivering UUSs, we signaled shocks following  
the three tone–shock pairings by a second discrete CS (a flashing 
light), contingency degradation did not occur (Supplementary  
Fig. 4b), consistent with the so-called cover-stimulus effect15,16. Thus, 
delivering a larger number of USs did not in itself cause contingency 
degradation; instead, the animals’ learning reflected the precise  
environmental contingencies during learning.

LA neural activity controls and tracks contingency
As animals could learn a reduced tone–shock contingency without 
relying on hippocampal plasticity and contextual memory formation, 
we next explored the role of the amygdala in contingency degradation. 
Previous research suggests that the amygdala is important for contin-
gency evaluations during reward learning17,18. It is also well estab-
lished that synaptic enhancement of auditory inputs to LA pyramidal 
neurons occurs during, and is necessary for, auditory aversive learn-
ing, and that this enhancement is dependent on US-evoked activation 
of LA neurons coincident with the auditory CS1–4,19. A direct repre-
sentation of the CS–US contingency needs to integrate information 
about the number of CS–US pairings versus UUSs, so the activation 
of LA pyramidal cells by the UUSs could be an important trigger for 
learning contingency degradation. To test whether this is the case, we 
expressed the outward proton-pump Arch-T20 in these neurons, using 
intra-LA injection of a lentiviral vector (Fig. 3a,b). In previous work21 
we demonstrated pyramidal-cell-specific targeting of Arch-T expres-
sion using this viral targeting approach and laser-induced inhibition 
of shock-evoked responses in these cells, which we also validated here 
(Fig. 3a). We used this technique to test whether activity in LA pyra-
midal neurons during UUSs is necessary for the degraded contingency 
effects to occur. We found that inactivating these cells during UUSs, 
but not at other times in the conditioning session, rescued freezing to 

the tone on the long-term memory test (Fig. 3b,c and Supplementary 
Fig. 5), but caused no significant change in context memory (Fig. 3d).  
The US-evoked depolarization of LA pyramidal neurons can thus 
differentially modulate the strength of auditory aversive memories 
depending on its timing relative to the CS, and this can occur inde-
pendently of changes in contextual memory strength.

As discussed above, the enhancement of auditory input synapses 
in the LA underlies the expression of auditory aversive memories. At 
the level of the LA, this representation corresponds to the associa-
tion between the sensory features of the auditory stimulus and aver-
sive outcome and is not correlated with the motor output directly22. 
Additionally, previous work in humans23 and primates18,24 has indi-
cated that amygdala neurons can adapt their activity according to the 
higher order structure of the task environment. A reduction in the 
overall enhancement of auditory processing in the LA could therefore 
regulate behavioral responses during retrieval in the case of contin-
gency degradation. To test whether this is the case, we next examined 
whether UUSs given after CS–US pairings reduced the learning-
induced enhancement of the auditory-evoked local field potential 
(A-LFP) response, a measure of synaptic enhancement in the threat 
learning circuit. We recorded A-LFPs in the LA before and after three 
tone–shock pairings (control II protocol) or three tone–shock pair-
ings followed by unpaired shocks (pairings-first protocol) (Fig. 4a).  
Consistent with previous findings, A-LFP was enhanced 24 h after con-
ditioning with 100% tone–shock contingency, however this enhance-
ment was significantly reduced in animals that were trained with a 
reduced contingency (Fig. 4b,c and Supplementary Figs. 6 and 7),  
paralleling a reduction in freezing behavior in the same animals  
(Fig. 4d). Thus, consistent with the behavioral results, the learning-
induced changes in auditory processing in the LA reflect the broader 
environmental contingencies.
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Figure 2 Conditioning to the context is not required for contingency 
degradation. (a) Experimental design depicting pharmacological 
inactivation of NMDA receptors in dorsal hippocampus before 
conditioning. (b) Hippocampal APV injections had no effect on learning 
the reduced auditory CS–US contingency (n = 8, 11, 10, 7, two-way 
ANOVA, no significant interaction F1,32 = 0.07, P = 0.79, main effect for 
contingency F1,32 = 11.98, P = 0.0015, simple effect for contingency 
F1,32 = 8.60, *P = 0.011; F1,32 = 5.45, *P = 0.026 for vehicle and APV 
groups, respectively). (c) NMDA receptor blockade impairs the acquisition 
of contextual aversive memories (two-way ANOVA, no significant interaction,  
F1,32 = 0.38, P = 0.54, main effect for drug treatment, F1,32 = 9.47,  
*P = 0.0043). (d) Similarly to the pairings-first case, contingency 
degradation to the auditory stimulus is unaffected in the intermixed 
condition by APV infusion in dorsal hippocampus (n = 9, 9, unpaired 
sample t-test, t16 = 2.14, *P = 0.048). (e) Impaired contextual aversive 
memory formation after NMDA receptor blockade in the intermixed 
condition (n = 7, 9, unpaired sample t-test, t14 = 2.31, *P = 0.037). 
Error bars indicate s.e.m.
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Assessing ambiguity with structure learning
Amygdala processing thus plays a key role in the learning and retrieval 
of an ambiguous CS–US relationship, and this learning does not rely 
on cue competition, although it might incorporate more complex  
context-cue interactions. However, in the absence of cue competition, 
it is not clear what computational strategy animals use to resolve 
ambiguity during associative learning. Addressing this question 
requires the establishment of a computational framework that can 
quantitatively account for our behavioral findings, as well as predict 
the effects of the neural manipulations we performed and account for 
known conditioning phenomena that arise as a result of ambiguity in 
the predictive relationship between cues and outcomes.

We propose a structure learning model (SLM) that directly assesses 
uncertainty in the environment’s statistical structure, determining 
which relationships are actually predictive by considering statisti-
cal dependencies (as well as temporal order and contiguity) between 
variables. Given events during conditioning, SLM learns a posterior 
probability distribution over the possible sets of predictive relation-
ships in the environment, represented by different graph structures  
(Fig. 5a) using the formalism of Bayesian networks25. During 
retrieval, the strength of an association can be evaluated by calculat-
ing the posterior probability of a connection (a direct edge or a path 
in the graph) between the corresponding cue and outcome using a 
model-averaging procedure (Online Methods). Unlike simple cue 
competition, structure learning compares different configurations 
of interactions between variables and weighs these representations 
against each other. Such a model is able to learn a cue–outcome con-
tingency even in the absence of a competing cue while incorporating 
flexibility in the range of possible interactions between cues.

We examined whether this type of model could simultaneously 
explain responses to discrete cues and the conditioning context. We 
built on previous work characterizing human causal judgments using 
a structure learning approach26, extending it to the threat condition-
ing framework and to modeling neural interventions and more com-
plex environments. We also analyzed the importance of the different 
components of the model in fitting a wide range of behavioral data.

To enable model fitting and comparison, we collected further 
behavioral data in a manner similar to experiment 1 (Fig. 1a), but 
using varied numbers of UUSs and CS–US pairings, allowing us 
to test which models can simultaneously explain learning under  

different conditions of ambiguity. In particular, if USs arrive only in 
the presence of the CS (that is, only CS–US pairings are given), the 
association between context and US is itself ambiguous, as it is not 
clear whether predictive power should be attributed to just the con-
text, just the CS, or both27. We further included behavioral results for 
different degrees of contingency degradation by varying the number 
of UUSs after CS–US pairings.

We found that SLM successfully accounted for standard learning 
curves of context and tone memory strength and predicted how asso-
ciative strength is attributed under ambiguity, including the effects of 
contingency degradation, the effects of partially reinforcing (or extin-
guishing) the context and the U-shaped learning curve of the context 
memory strength during overshadowing by the CS (Fig. 5b). SLM was 
also able to account for freezing levels in the control I group (resulting 
from a low rate of shock delivery) and successfully explained our first 
experiment (Fig. 5b and Supplementary Fig. 8). In addition, SLM 
successfully predicted the effects of hippocampal NMDA receptor 
blockade, using the best-fit parameters from the behavioral data set, 
and predicted the result of the amygdala inactivation experiments 
(Fig. 5b). In summary, SLM was able to capture how the different 
associations interact in driving behavior both in cases where these 
interactions appear competitive and in cases where there is an appar-
ent dissociation or facilitation between associations.

A straightforward extension of SLM (Supplementary Fig. 9) that 
included a second CS (such as a light) but kept the best-fit parameters 
and scaling of the original model could also account for a range of  
previously documented conditioning phenomena involving the assess-
ment of ambiguous stimuli. SLM could thus account for the effects 
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Figure 3 Activation of LA pyramidal cells during unsignaled USs is 
required to learn the degraded CS–US contingency. (a) Optogenetic 
inhibition of shock-evoked firing rate responses in single LA neurons. Peri-
event time rasters (top) and histograms (bottom) show shock-evoked (red 
bars) responses in two example neurons without (left) and with optical 
inhibition (right, laser-on denoted by green bar). (b) Design of optogenetic 
behavioral experiments. Top, lentivirus injection and example of Arch-T 
expression in LA pyramidal neurons (scale bar, 160 µm). Virus expression 
in LA was verified for all experimental animals included in study. Bottom, 
protocols with laser illumination either coinciding with or offset from 
UUSs. Three tone–shock US pairings (P) were presented either intermixed 
with or before 12 unsignaled USs (U). (c) Inactivation of LA pyramidal 
neurons during, but not offset from, UUSs prevented the learning of 
the degraded auditory CS–US contingency (n = 7, 8, 8, 10, two-way 
ANOVA, no significant interaction, F1,29 = 0.28, P = 0.60, main effect for 
inactivation, F1,29 = 11.41, P = 0.0021, simple effects for inactivation 
F1,29 = 7.02, *P = 0.013, F1,29 = 4.45; *P = 0.044 for pairings-first 
and intermixed groups respectively). (d) Context memory strength was 
unaffected by optogenetic manipulation (two-way ANOVA, significant 
interaction, F1,29 = 4.39, P = 0.045, main effect for inactivation  
F1,29 = 0.0297, P = 0.86, not significant; simple effects for inactivation 
F1,29 = 2.37, P = 0.13; F1,29 = 2.03, P = 0.17 for pairings-first and 
intermixed groups respectively; not significant). Error bars indicate s.e.m.
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of signaling the UUSs with a second CS (the cover-stimulus effect 
described above) and gave a good fit both for our replication of this 
phenomenon (Fig. 5b and Supplementary Fig. 10a) and qualitatively 
similar predictions to the data from previous studies28 using related 
experimental procedures (Supplementary Fig. 10a). The model’s 
prediction for other phenomena (including blocking10, overshad-
owing and recovery from overshadowing29) are further detailed in 
Supplementary Figure 10b–d.

Model comparison
We compared SLM to three models that assume a fixed structure and 
evaluate contingencies by learning strength parameters for associa-
tions through some form of cue competition (Supplementary Fig. 11  
and Supplementary Modeling). For the most direct comparison 
between a structure learning and a combined parameter learning/cue 
competition approach, we fit a parameter learning model12, or PLM, 
that uses an identical Bayesian network representation but assumes 
the maximally connected structure (Fig. 5a, Graph 6). PLM learns a 
strength parameter for each edge starting from flexible, independent 
prior distributions over these edge parameters, fit to best explain behav-
ioral data. Despite this flexibility, the parameter learning approach that 
implements cue competition in a statistical learning framework did 
not capture well how animals evaluated contingencies across the dif-
ferent conditions (Table 1 and Supplementary Fig. 11).

Further, we included two advanced associative models that repre-
sent modern implementations of the cue competition idea formulated 
in the original Rescorla-Wagner model. These extend the Rescorla-
Wagner model to allow for retrospective updating of associations and 
to capture the covariance information between cues and outcomes. 
Like the Rescorla-Wagner model, Van Hamme and Wasserman’s 
extension7 (Supplementary Fig. 11) implements cue competition 
during learning, but also updates associations when either the cue or 
the outcome (or both) are absent. Although this model utilizes the 
covariance information between a cue and an outcome, it evaluates 
these cue–outcome correlations in isolation for each cue, and as such 
did not give a good account of the behavior we observed (Table 1). 
A further shortcoming of this model is that it cannot account for the 
hippocampal interventions, since it does not predict contingency deg-
radation in the absence of a competing variable (compare Fig. 2b,c). 
We therefore also evaluated a version of this model in which we added 
the background cue; however, this modification did not result in a bet-
ter model fit (Supplementary Table 1). The sometimes-competing-
retrieval model8 (SOCR) considers the covariance information both 
between cues and outcomes and between different cues, in this sense 
approximating the principles of a Bayesian parameter learning model, 
and implements cue competition at the time of memory retrieval. We 
fit this model to the behavioral data both in its original form and with 
the added background variable, but it did not provide a fit comparable 
to that of SLM (Table 1 and Supplementary Table 1).

SLM thus provided a better quantitative fit than PLM or  
associative cue-competition models, while also using fewer free 
parameters, and was robust to changes in specific components 
of the model (Supplementary Table 2), suggesting that it is the 
principle of evaluating different models of the environment that 
enables it to match observed behavior. A model implementing full 
Bayesian inference by learning both a distribution over structures 
and corresponding parameters (SPLM) provided a similar fit to 
SLM (Supplementary Fig. 11), but performed worse according to 
measures controlling for extra model parameters (Table 1) with 
the Bayesian information criterion, indicating that improvements 
from adding parameter learning did not justify adding even a single 
parameter to the model.

DISCUSSION
Here we examined the neural and computational processes through 
which ambiguity regulates aversive memory strength. First we iden-
tified key neural processes regulating contingency learning, reveal-
ing a new function of amygdala pyramidal neurons: in addition to 
their known role in storing associative aversive memories, they also 
actively participate in regulating a given association in response to 
signals (unsignaled aversive outcomes) that increase ambiguity in the 
cue–outcome association. Further, our results demonstrate that the 
degree of enhancement of auditory CS processing in amygdala neu-
rons directly reflects a given CS–US contingency. Finally, we found 
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converging evidence on the computational and implementation levels 
against learning models that rely only on learning competing cue–
outcome associations, supporting instead an account that directly 
assesses ambiguity in the environment’s structure.

Structure and parameter learning as complementary strategies
When learning from sparse and ambiguous data, structure learning 
and model selection are important prerequisites for making successful 
predictions. Falsely assuming predictive relationships where they do 
not exist leads to a form of overfitting30 and to poor generalization 
for future predictions. Quickly distinguishing spurious and predictive 
relationships is therefore important, and structure learning achieves 

this by also considering sparser structures that might lead to better 
predictions by identifying which variables actually interact.

While the exact contingencies between variables (for example, the 
strength of a generative causal process) often change over time, the 
existence or lack of a predictive relationship tends to be a stable prop-
erty of an environment over time. This provides a strong rationale for 
separating the structure and parameter aspects of learning in certain 
domains and for engaging a structure learning mechanism when the 
brain is initially faced with a new environment or task.

Once enough information is gathered to evaluate different struc-
tures with a certain confidence, an important next step is to fine-
tune the individual parameters of those models. We theorize that, 

as animals explore their environment, initial 
learning is geared toward structure learning, 
with a (potentially gradual) switch to param-
eter learning following, resulting in distrib-
uted representations of associations. Since 
continually updating a distribution over 
structures is computationally expensive and 
likely inadvisable, structure might be reen-
gaged only if new environmental variables 
are encountered or the events in the envi-
ronment strongly violate expectations based 
on the current model. Such a dual learning 
mechanism could in turn help explain the 
difficulty of persistently weakening aversive 

Table 1 Comparison of model fits

Model MSE
Standard error  

of the MSE
MSE for hippocampus  

APV injection
Free  

parameters
Bayesian  

information criterion

Structure learning 13.44 0.0054 34.03 2 88.82
Structure and parameter 12.61 0.054 18.29 9 110.54
Parameter learning 20.80 0.024 245.64 8 121.69
SOCR (extended 
comparator hypothesis)

32.45 – 292.53 6 127.85

Extended Rescorla- 
Wagner model

67.06 – 848.88 8 155.64

Mean squared error (MSE) for the best fit of each model, followed by the standard error of the MSE, and the error of 
the model in predicting the results of hippocampal interventions, with each value representing percentage freezing 
squared. The Bayesian information criterion provides a principled measure of model comparison, taking into account 
the number of model parameters.
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memories and account for some important phenomena in memory  
updating and reconsolidation31.

Brain structures such as the medial prefrontal cortex or the anterior 
cingulate have been implicated in updating or representing internal 
models of the environment32,33. These brain regions, together with 
the amygdala24,34, as well as certain neuromodulators35, could help 
determine which type of learning is employed, depending on the level 
of ambiguity in the environmental contingencies and on how rapidly 
or drastically these contingencies appear to change. A more exact 
understanding of the circumstances that engage the different learning 
strategies would be important in understanding how aversive memo-
ries are updated, with possible clinical applications in the treatment 
of persistent and/or exaggerated responses.

Context as both cue and modulator for internal models
Here we examined the conditioning context’s role as a CS; however, 
the context, by modulating memory retrieval, is also known to have 
important effects on learning that go beyond forming predictive asso-
ciations. While first-learned associations often easily transfer between 
(physical or temporal) contexts for retrieval36, if learning takes place 
over multiple epochs or in multiple contexts, behavior can be sensi-
tive to the retrieval context as well. Thus it is possible that in complex 
situations different distributions over structures are associated with 
different environments or a change of context determines whether 
structure or parameter learning is preferentially engaged, which could 
explain the context’s role as a modulator of memory.

A different formulation of structure learning using latent causes, on 
which our work also builds37, proceeds by clustering similar events in 
the environment, with subsequent work successfully modeling phe-
nomena related to extinction and to renewal38,39. The context-specific 
nature of these phenomena in particular could be an example of how 
structure learning results in context-specific behaviors. Though these 
different formulations of structure learning rely on different compu-
tational processes and explain different learning phenomena, they all 
give support to the idea that the brain could employ structure learning 
to deal with certain types of uncertainty.

Neural implementation of structure learning
The experimental findings and SLM together suggest an algorithmic-
level view on how structure learning and structured representation 
of the environment could emerge in associative learning by implying 
a circuit architecture in which this learning could be implemented. 
The LA is known to be an important integrative site through which 
sensory information from different modalities is associated with aver-
sive (or rewarding) outcomes. Current views suggest that plasticity 
of modality-specific sensory input synapses to LA neurons mediates 
this form of aversive learning. However, cells in the LA and in tha-
lamic and cortical structures that provide sensory input to the LA 
show a diversity of response properties, with some cells responding 
to several sensory cues rather than a single one40–42. This represen-
tation parallels the diversity of graph structures seen in our statisti-
cal model, with different combination of cues associated with the  
US in different graphs.

Several models have been proposed for how neurons might com-
pute inference in graphical models43,44 Some in particular have sug-
gested that simple learning rules can produce synaptic weights and 
firing rates that represent how well patterns of sensory stimuli in the 
environment agree with an internal generative model45. A synaptic 
learning rule tracking the likelihood of a generative model represented 
by input synapses, together with an appropriately learned normaliza-
tion to translate these likelihoods into a probability distribution across 

the structures, could then implement structure learning in SLM. In 
such an implementation the priors of the model correspond to initial 
distributions over synaptic weights and over the ratio of cells with 
different combinations of sensory input. Such a neural representation 
could provide a simple and efficient probabilistic code for structure 
learning46. Unlike traditional models of associative learning where a 
single weight and corresponding synaptic connection(s) control an 
association, here information about each association is represented 
by, and distributed over, multiple weights. An important characteristic 
of such a distributed representation is that computations can proceed 
in parallel over different microcircuits representing different models 
of the environment, but with all of them affecting each other at the 
time of behavioral readout. Updating multiple graphical structures 
representing the different features of a given learning environment at 
amygdala neuron synapses and/or at synapses in upstream areas could 
be accomplished through well-established heterosynaptic plasticity 
mechanisms47,48 that allow synaptic weight changes even at synapses 
which are not directly recruited during plasticity induction.

Explicitly representing the many possible structures of a complex 
environment can be a challenge, even though calculating the poste-
rior probability over specific features (such as edge probability) can 
be done efficiently even for a large number of variables under rea-
sonable constraints49 (such as are imposed by temporal relationships 
between cues and the complexity of models considered). However, a 
synaptic sampling mechanism where the inherent variability of syn-
apses represents a distribution of synaptic strengths might provide 
a more efficient alternative to an exact enumeration of graph struc-
tures and, in particular, might implement the integration over many  
different parameter values through sampling over stochastic synaptic 
features and spine motility50.

Our electrophysiology data demonstrate that averaged neural activ-
ity (as reflected by the local field potential) in LA can track con-
tingencies over broad timescales and that activation of LA neurons 
is important in regulating contingency evaluations during learning. 
This supports the idea that LA neural activity reflects and can caus-
ally modulate inferential processes. While these data suggest that LA 
(or other) neuronal ensembles can encode sensory information as 
probabilistic graphical structures, an ideal test of this model would be 
to examine more closely whether neuronal ensembles in these circuits 
encode information in this way and how learning affects these rep-
resentations. However, this requires the ability to chronically moni-
tor large-scale neuronal population dynamics. Until recently this has 
not been possible, but recent advances in neuronal recording and 
imaging techniques4 may allow researchers to examine when and 
how these types of representations are encoded and altered with 
learning. The SLM along with the experimental data described here 
provide a framework for guiding future research in this area. This 
approach could provide insights into how environmental stimuli are 
selected to become associated with biological threats and could be a 
key step in understanding anxiety disorders that are characterized by  
maladaptive and inappropriate responses to stimuli.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Subjects. Male Sprague-Dawley rats (Hilltop) approximately 8 weeks old and 
weighing 275–300 g (225–250 g for the electrophysiology experiments) on arrival 
were individually housed on a 12-h light/dark cycle and given food and water 
ad libitum. All animals were naive and had no previous history before the con-
ditioning experiment or surgery appropriate to their group. All procedures were 
approved by the New York University Animal Care and Use Committee or the 
Animal Care and Use Committees of the RIKEN Brain Science Institute, and 
conducted in accordance with the National Institutes of Health Guide for the 
Care and Use of Experimental Animals.

Viral vectors. Lentiviral vectors (lentivirus-CaMKII-ArchT-GFP) were produced 
by, and purchased from, the University of North Carolina Vector Core. Previous 
work21 has demonstrated specific expression in LA pyramidal neurons using 
these vectors.

Behavioral conditioning experiments. Animals were placed into a custom-
modified Med Associates sound-isolating chamber with Plexiglas walls, illumi-
nated only by infrared light, and underwent one of several conditioning protocols 
consisting of sequences of CS–US pairings and/or unsignaled USs (UUSs). The 
CS for all experiments was a series of 5-kHz tone pips (pips at 1 Hz with 250 ms  
on and 750 ms off) for 30 s. US onset occurred and coterminated with the final 
pip. The US was a 1-s, 1-mA footshock. Inter-trial intervals (ITIs) between the 
USs were randomized around 120 s. For the cover stimulus experiment, the light 
CS was a 30-s flashing white light. Animals were removed from the training 
context 60 s after the final US of the conditioning protocol (except for animals 
that received unreinforced context exposure, which were removed 60 s after the 
end of the last ITI), and spent around 120 s in total outside both the condition-
ing chamber and the behavioral colony (in the room used for conditioning while 
the conditioning chamber was cleaned, and in transit to and from the behavioral 
colony). During the long-term context memory testing phase 24 h later, animals 
were placed back in the original conditioning context for 330 s. During long-
term CS memory testing, animals were placed in a novel, peppermint-scented 
testing chamber (context B, Coulbourn Instruments), that was different from the 
conditioning chamber in shape and size, was illuminated by a visible houselight, 
and had a smooth plastic floor. After a 150-s acclimation period, animals were 
presented with the identical CS five times, with a randomized ITI of around 120 s.  
During the training and testing phases the animals’ behaviors were recorded 
on DVD or on a digital storage unit. A rater who was blind with respect to the 
treatment group scored the animals’ behavioral freezing during the first 5 min 
of the context test and during the 5 CSs, as well as the 2 min before the first CS 
in the CS test. Scoring was done offline using a digital stopwatch, and freez-
ing was defined as the cessation of all bodily movement with the exception of 
respiration-related movement. Percentages were calculated as the ratio of time 
spent freezing to the total time of 300 s for the context memory test, and to the 
combined 150 s duration of the 5 CSs for the CS memory test. Animals that froze 
for more than 18 s (15%) of the 2 min before the onset of the first test CS in the 
novel testing environment of the CS test were excluded from the study, as this 
freezing interfered with our ability to evaluate the level of the CS memory. The 
remaining animals showed very low levels of pre-CS freezing (with a mean < 1%). 
Sample sizes for the different conditioning protocols used for the modeling study 
are summarized in Supplementary Table 3. Eleven animals only received the CS 
test, but no context test, as noted in Supplementary Table 3. These animals were 
included in the modeling study, but not in the analysis of experiment 1. As the 
order of the context and CS tests had no statistically significant effect on freezing 
(Supplementary Table 4), context testing was always done first for behavioral 
experiments with animals that had undergone surgery. All conditioning and  
testing was done during the light cycle.

Randomization. Animals were randomly assigned to experimental groups before 
the start of each experiment. Experiments were blocked so that groups alternated 
and the first group for each day was randomly selected. ITIs were pseudorandom 
around 2 min.

Stereotaxic cannula implantation, virus injection, and electrode surgery. 
Animals were anesthetized with a mixture of ketamine/xylazine and implanted 
with bilateral chronic guide cannulae (22 gauge, Plastics One) above the dorsal 

hippocampus (stereotaxic coordinates from bregma anterior–posterior –3.8 mm, 
dorsal–ventral –2.6 mm, medial–lateral 1.5 mm) or the LA (21 gauge, stereotaxic 
coordinates from bregma anterior–posterior –3.0 mm, dorsal–ventral –6.6 mm, 
medial–lateral 5.4 mm). For optogenetic experiments simultaneous bilateral 
injections of 0.5 µl lentivirus were made following cannula placement, through 
an injector cannula on each side (26 gauge, Plastics One) that protruded 1.4 mm 
beyond the tip of the guide cannula and was attached to a 1-µl Hamilton syringe 
(gauge 25s) by polyethylene tubing. Injections were controlled by an automatic 
pump (PHD 2000, Harvard Apparatus) and were made at a rate of 0.07 µl/min. 
Injector cannulae were left in place for 20 min after injection and then replaced 
with clean dummy cannulae.

For awake, behaving electrophysiological experiments, animals were anes-
thetized as above, and an insulated stainless steel recording wire (1−2 MΩ) 
(FHC, Inc) attached to a circuit board (Pentalogix) was lowered such that the 
tip of the electrode targeted the left LA (stereotaxic coordinates from bregma, 
anterior–posterior –3.0 mm, dorsal–ventral –8.0 mm, medial–lateral 5.4 mm). 
Additionally, two silver wires, one placed contralaterally and one ipsilaterally 
above the neocortex, served as a reference and ground respectively. For all experi-
ments, guides and electrode boards were affixed to the skull using surgical screws 
and dental cement.

Awake-behaving psychopharmacology experiments. Approximately 1 week 
after dorsal hippocampus cannula surgery, the competitive NMDA receptor 
antagonist APV (Sigma-Aldrich) was dissolved in saline at a concentration of 
10 µg/µl. Animals were taken one by one and injection guides (28 gauge) con-
nected to 1-µl Hamilton syringes (gauge 25s) mounted on an automatic pump 
(PHD 2000, Harvard Apparatus) were inserted through the implanted cannulae, 
such that they extended 1 mm below tip of the cannulae. After the injectors were 
in place, rats received bilateral infusions of ether 0.5 µl saline or 0.5 µl of the  
10 µg/µl APV-saline solution (5 µg APV per hemisphere), at a rate of 0.1 µl/min,  
for 5 min. The injectors were left in place for 4 min after the infusion was com-
pleted and then replaced with clean dummy cannulae. Animals were returned 
to the animal colony for 6 min, after which time the conditioning session began. 
Conditioning and testing were conducted as described under “Behavioral  
conditioning experiments.”

Awake-behaving optogenetic experiments. Approximately 4 weeks after virus 
infusion, a fiber optic cable attached to a 532-nm diode-pumped solid state 
laser (Shanghai Laser and Optics Century Co, Ltd.) was inserted through and 
screwed onto each of the bilateral cannulae targeting the LA, such that the tip of 
the fiber optic cable extended 1 mm beyond the tip of the cannula. The tubing 
surrounding the fiber optic cables was painted black so that the laser illumina-
tion caused no perceptible illumination of the conditioning chamber. Rats with 
the fiber optic cables attached then underwent conditioning as described under 
“Behavioral conditioning experiments,” except that they received laser illumi-
nation either occurring 250 ms before UUS onset and lasting 50 ms after UUS 
termination (‘Overlap’ group) or an identical laser illumination delayed after the 
UUS by a random time interval of around 30 s (‘Offset’ group). The fiber optic 
cables were also attached to the cannulae before the context test, but no laser  
illumination was given.

Awake-behaving local field potential physiology. During the first 2 consecutive 
days of the awake-behaving physiology experiments, animals were taken one by 
one, attached to the electrophysiological setup, and placed in a novel, peppermint-
scented testing chamber conditioning chamber (context C) that was distinct from 
context A (and context B) in shape and size, illuminated by a visible houselight, 
with metal bar walls and a plastic floor. After a 5-min acclimation period, ani-
mals were habituated with three presentations of the CS (with the same CS as 
described under “Behavioral conditioning experiments”) with a randomized ITI 
of between 1 and 5 min. LA local field potentials were recorded during these two 
sessions. The third day all rats were conditioned as previously described in the 
behavioral conditioning experiments method section. 24 h after conditioning rats 
were placed back in context C, and after 5 min acclimation 5 CSs were delivered 
with a random ITI of between 90 s and 150 s, while LA local field potentials and 
freezing behavior were recorded. CS presentation was automated using Spike2 
software (CED, Cambridge, UK). Electrical signals were recorded and analyzed 
as described previously21. Latencies of the A-LFP and the average waveform  



©
20

16
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature neurOSCIenCe doi:10.1038/nn.4308

amplitudes during habituation for the two groups are given in Supplementary 
Table 5. Statistical comparisons were made using two-tailed unpaired t-tests, and 
two-way ANOVA for the latencies.

Awake-behaving extracellular single-unit physiology. For single-unit 
electrophysiological studies, rats received chronically implanted micro-
drives consisting of 16 stereotrode bundles (0.001-inch insulated tung-
sten wire (diameter 25 µm), California Fine Wire Company) and eyelid 
wires for shock delivery51. Following recovery from surgery, daily screen-
ing sessions were conducted until single, shock responsive units were iso-
lated (testing was done using mild, single-pulse (2 ms) 1-mA eyelid shocks). 
Animals then received intermixed shocks (12 trials of each condition) alone  
(2 ms, 2 mA at 7 Hz for 1 s) or shocks with laser illumination (589 nm, Shanghai 
Laser Company). Laser onset occurred 400 ms before shocks and was turned off 
50 ms after US termination. Spike data were acquired using a Neuralynx data 
acquisition system. Spike clustering and single unit isolation were performed 
using Neuralynx SpikeSort 3D software and spiking data. Single unit isolation 
was assumed if spike trains had a refractory period of greater than 1 ms and a 
mean spike amplitude of at least 70 µV.

Histology. After behavioral testing was completed, animals were anesthetized 
with an overdose of chloral hydrate and perfused with paraformaldehyde 
(for optogenetic experiments) or with either 10% buffered formalin or Prefer 
(Anatech, Ltd.). For animals with electrode implants, the location of the elec-
trode was marked by passing a small current (4 µA; 5 s) through the electrode 
tips before perfusion. Following perfusions, brains were sectioned into 40-µm 
coronal slices and stained with Nissl (Sigma-Aldrich, C5042, staining only 
for animals with electrode implants or hippocampal cannulation). An experi-
menter blind to the identity of the animal and treatment assessed the placement 
of the cannulae, electrodes and virus expression. For animals to be included 
in the analysis of the optogenetic experiment, Arch-T had to be expressed in 
LA neurons, with the tip of the each guide cannula dorsal and proximal to the  
LA (Supplementary Fig. 5).

Statistical analysis. Experiments 1–3 had a two-way design and were analyzed 
accordingly with a two-way ANOVA model with interaction. CS and context 
scores were analyzed separately. Experiment 4 was analyzed using unpaired  
t-tests. We tested for normality using a Lilliefors test with a critical value of 0.01, 
and for equality of variances in experiments 1–3 using Levene’s test. The groups 
compared were found to be normally distributed with equal variances, with two 
exceptions. The Lilliefors test was significant for the context test scores for con-
trol II group in experiment 1. However, given the large sample size (n = 22)  
in this experiment and the strong negative result (P > 0.8) for a difference between 
control II and pairings-first groups, the result of the ANOVA test can be expected 
to be robust to this violation. Levene’s test found unequal variances among the 
context test scores in experiment 2, since the scores from the APV groups tended 
to lie very close to 0, resulting in a small variance. We used the Keppel correc-
tion to correct for this violation by substituting α/2 for the original critical value 
α = 0.05. Since our P value was very small (P = 0.0043), changing the critical 
value had no effect on the test’s conclusion, and our result is expected to be 
robust against this violation. We also found unequal variances using the two-
sampled F test for both freezing scores and amplitude changes in experiment 
4, and accordingly used an unpaired two sample t-test with unequal variances. 
Since repeated-measures ANOVAs can be especially susceptible to violations 
in sphericity, we used a lower bound correction when sphericity was violated  
(Supplementary Figs. 2 and 7).

F and P values for interaction and main effects, as well as for simple effects, 
are summarized in Supplementary Table 6. For simple effects we report the 
individual P values, as adjusting for multiple comparison by the Holm-Sidak 
procedure did not affect statistical significance. We also used a two-way ANOVA 
to evaluate the effect of the order of the context and CS tests for data from experi-
ment 1, as well as using data from all the behavioral experiments where the order 
of testing was varied (Supplementary Table 4). We measured the effect size of 
contingency on CS memory in experiment 1 and performed power analysis to 
determine an appropriate range of sample sizes for the subsequent experiments. 
The effect size of f = 0.31 fell in the medium (0.25) to high (0.40) range for this 
type of test, with a power of 0.78. We set the target sample size for experiments  

2 and 3 to detect a strong effect (f = 0.4) with a power of at least 0.6, requiring 
a total n of at least 33. The t-test comparing changes in A-LFP amplitudes in 
experiment 3 had an effect size of 1.15.

To compare means of discrete measures, such as defecation (Supplementary 
Fig. 3), we used the Mann-Whitney U test. All tests used in this study were two-
tailed. Mean and standard error values for our data are listed in Supplementary 
Table 7.

Bayesian network models. The Bayesian network models represented the envi-
ronment with graphs over four binary variables, the background, context, CS 
(tone) and US. For notational simplicity we will also refer to these as X1, X2, X3 
and X4 respectively, or as the vector of variables X, with each taking either the 
value 0 (absent) or 1 (present). For each training protocol, a series of observa-
tions Xt was summarized into counts of the eight different configurations of 
the four binary variables (eight rather than sixteen, since the background, by 
definition, will always be ‘present’ during the experiment). We adopted the use 
of the background variable from causal learning models, to represent the sum of 
all unobservable or unspecified influences on our system (in particular, on the 
US occurrence). As such, the background will always be present during learning 
but absent for predictions during recall, and an edge from the background to 
the US (X1 → X4) present in all graphs. An alternative to having the background 
variable is to specify a prior distribution (e.g., β) for the probability of US occur-
rence for the case when the US has no parent variables or when all of its par-
ent variables are absent, allowing one to calculate likelihoods of observations. 
This can yield to a similar fit as the original SLM, but the background variable 
from the PLM is highly detrimental to its fit. See Supplementary Modeling  
and Supplementary Tables 1 and 2.

We considered potential edges that conform with the ordering Xi ≺ Xj iff i < j:  
between the context and the US X2 → X4, the tone and the US X3 → US and 
between the context and the tone X2 → X3, with corresponding parameters ω1,4, 
ω2,4, ω3,4 and ω2,3, respectively. We assumed that the animals learn this order-
ing because of the temporal order and duration of the stimuli. Edges between 
variables represented noisy-or generating functions, corresponding to the 
assumption that different parent variables predict a child variable independently 
(analogous to independent generative causes, but without making assumptions  
about causality). For edges with parameters 0 ≤ ωi,j ≤ 1, the relevant probabilities 
are then given by 
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Pa(X) is the parent set of X (all the variables sending edges to X). More 
details about the temporal representation of trials and about the assumptions 
of the model about the stationary nature of the environment are available in the 
Supplementary Modeling.

Structure learning (SlM). For SLM we calculated the posterior distribution 
over different Bayesian network structures, without assuming or learning 
specific parameter values ωi for the edges. We considered the six possible 
graph structures Gi ∈ G that can lead to different predictions about the US  
(Fig. 5a). In graphs 1 and 2, leaving out, or adding the edge X2 → X3 is irrel-
evant when making predictions about the US, we therefore considered only 
one of each of these pairs of functionally equivalent graphs (the one with no 
X2 → X3 edge).

By Bayes’ rule 

P G D P G P G P D Gi i i i G GGi i i( | ) ( ) ( | ) ( | , )| | |∝ ⋅ ⋅∫w w w wd
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so to calculate the posterior probability of a graph structure G, we integrated  
out the parameters in the graph, assuming that each comes, independently, from 
the uniform distribution U[0,1]. We fitted a prior P(G1) = ρ for the minimally 
connected graph G1, to account for the fact that the CS and the context are  
initially largely neutral stimuli that do not predict threats. The other graphs  
had equal priors

 P Gi( ) = −1
5

r

Unlike parameter priors, which strongly influence structure learning no matter 
the amount of data, the effect of these structure priors on the predictions of the 
model becomes less important as the number of training trials increases (i.e., as 
the data overwhelmed the priors).

The likelihood term for a graph Gi is the probability of observing a par-
ticular combination of stimuli during a complete training protocol, given 
a graph structure G and parameters ω|Gi (for the edges present in Gi). 
To calculate this probability, we took the product over the sequence of  
observations Xt so that 
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 T is the total number of time bins during the experiment, including the time 
outside the training context (see Supplementary Modeling). For notational 
simplicity we chose to write the integral as integrating over a sequence of tri-
als, rather than counts of a specific trial type, but the two approaches are of  
course equivalent.

To calculate the posterior probability of a feature f, such as particular edge, or 
a path, we used model averaging over the graph structures 

P f D P G D f G
G

i i
i

( | ) ( | ) ( )=
∈

∑
G

where f(G) is 0 or 1, depending on whether the feature f is in graph G or not. 
Such model averaging is a popular tool for prediction problems when lim-
ited data means that the posterior distribution over graphs is not peaked 
at a single structure (i.e., the choice of a single structure for predictions  
is inappropriate).

The behavioral response to the tone CS is then predicted to be proportionate 
to the posterior probability of the edge X3 → X4: 

CS elicited response ∝ →( )P X X D3 4 |

The context can be connected to the US both by a direct edge X2 → X4 and 
indirectly through the path X2 → X3 → X4. In cases where a direct connec-
tion does not exist, an indirect connection still signifies statistical depend-
ency in cases when the intermediate variable(s) cannot be observed. Such 
a connection can therefore serve as a basis for a (possibly weaker) behav-
ioral response. Such a weaker response has been observed in various 
studies in the form of second-order conditioning, or facilitation. Such a rela-
tionship could be represented in the brain by disynaptic or polysynaptic  
connections, resulting in a weaker feedforward response. We therefore introduced 
a second model parameter α, 0 ≤ α ≤ 1, that reflects a discounting factor for such 
secondary relationships, as well as weighing this indirect context-US relationship 
by a simple estimate of the context–CS association, depending on the frequency 
with which the CS appeared in the context, 
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for some constant α. This parameter could also potentially account for influ-
ences of temporal discounting, as well as substituting for the need to specify a 
nonuniform prior distribution for the CS-on probability.

For training protocols where no tone was played, the posterior is calculated 
only over two structures with the variables X1, X2 and X4. Here 
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where P(G) is a uniform prior. In this case we have 

Context-elicited response ∝ →P X X D( )|2 4

Since the integrals in (5) and (6) cannot be evaluated analytically when any vari-
able has two or more parents, we used a Monte Carlo stimulation to approximate 
their value. For each calculation, 2.5 × 105 samples of the parameter vector ω were 
drawn from a uniform distribution, and the resulting likelihoods were averaged 
over. For given parameters ρ and α, this gave predicted behavioral responses for 
all the different conditioning protocols.

Parameter learning (PlM). PLM predicts behavioral responses based on learn-
ing the posterior mean of the parameter values in the maximally connected graph, 
Graph 6 (Fig. 5a). For parameter ωj,k (for the edge Xj → Xk) using the joint prior 
over ω, we have 
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During retrieval, predictions are based on standard inference in the network 
with parameters ŵ  such that 
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Each of the four Bayesian network parameters ωj,k has an independent β prior 
distribution. Fitting the model thus includes finding a pair of parameters for 
each of these four prior β distributions (eight parameters in total), such that 
they best explain the behavioral data across all training protocols. We carried out 
this optimization using a genetic algorithm separately for different discretization 
parameters t that determined the temporal subdivision of the 2-min trials. We 
allowed some flexibility toward the discretization of the CS in form of a binary 
choice when t does not uniquely determine the discretization of the CS (e.g., when  
t = 5 the CS could be both length 2 or length 1). We found that the default discre-
tization of t = 1 provided a considerably better fit than all other values of t.

learning both structure and parameters (PSlM). Learning a full posterior over 
the Bayesian network representations includes first learning a distribution over 
the graph structures as in SLM, and then learning a posterior distribution for the 
parameters present for each structure as in PLM, but separately for each graph. 
Predictions are then made by averaging over predictions from the different graph 
structures weighed by the posterior probability of each graph. 
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where for notational simplicity we take ŵ jk
i = 0 if the corresponding edge is not 

present in graph Gi. We assumed a prior over the relevant graph structures as in 
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SLM, with ρ a free parameter and uniform priors for parameters for structure 
learning, while fitting β-distributed edge-parameter priors for the parameter 
learning part as in PLM, such that these priors were shared across all graph struc-
tures where the respective parameters were present. Accordingly, this model fits 
nine parameters.

Model fitting. Since our data has two distinct measures (CS freezing and context 
freezing), we used mean squared error (MSE) rather than R2 as a measure of 
model fit. To evaluate the fit of the model, predicted responses were scaled to 
freezing scores by multiplication with a scaling factor found by linear regression. 
This was done separately for the context and for the CS freezing scores, since 
the different behavioral testing procedures are likely to result in different scal-
ing factors. Mean squared error (MSE) was then calculated by summing these 
squared error terms and dividing by 29, the number of different conditioning 
protocols. The best-fitting parameters were found using a genetic algorithm, 
using MATLAB’s ga function. Parameters for the β priors were constrained to 
lie between 0.01 and 30. For each model, we repeated the optimization process 
at least ten times, with each run giving approximately the same minimum error 
values. Values for α and P(G1) for SLM (and SPLM) were also consistent across 
runs, but the best-fit β parameters varied, since different pairs of β parameters 
can determine very similar distributions. For each model, we then averaged over 
twenty runs with each of the 50 best-fitting set of parameters found during the 
optimization process and chose the set of parameters that gave the smallest aver-
age error (Supplementary Table 1). For each model, we checked the feasibility 
of this optimization by generating a data set from the model using four sets of 

randomly generated parameters. These four data sets per model were scaled so 
that the means of the CS and context scores matched the means from the behavio-
ral data (so that MSEs could be appropriately compared). Fitting these generated 
data sets by the procedure outlined above (but running the genetic algorithm only 
once rather than ten times), we obtained MSEs that were all below 0.05%2. Best-fit 
parameters for the models are listed in Supplementary Table 8.

Modeling neural interventions. The inactivation of the hippocampus during 
learning was modeled using the best-fit parameters from the behavioral data, and 
removing the variable X2 and the corresponding edges from the model (or equiva-
lently, by setting the prior for all these edges to the delta function), and calculating 
the predicted CS-elicited freezing scores. Amygdala inactivation during the US 
was modeled by excluding trials with inactivation from the trial counts (such that 
they counted neither toward the reinforced nor the unreinforced trials).

A Supplementary Methods checklist is available.

code availability. All MATLAB (R2014b) scripts used to fit and compare the 
computational models are available upon request.

data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

51. Johansen, J.P., Tarpley, J.W., LeDoux, J.E. & Blair, H.T. Neural substrates  
for expectation-modulated fear learning in the amygdala and periaqueductal gray. 
Nat. Neurosci. 13, 979–986 (2010).



 

Supplementary Figure 1 

Correlations between tone and context freezing by animal in each of the four groups in experiment 1.   

Every animal is represented by a blue circle. Correlation was measured by Spearman’s rank correlation 
coefficient (ρ). 
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Supplementary Figure 2 

Comparisons of context memory between groups are stable over time and invariant to the salience of the 

conditioning context.  
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(a) Minute-by-minute analysis of freezing during the context test for the groups in experiment 1 (and Pairings 
Last, included for illustration but not in the statistical analysis). A repeated measures ANOVA showed no 
Time*Contingency*Spacing interaction (n = 16,17,18,20,21,F

1,288
 = 1.96, P = 0.17). A comparison restricted to 

the massed condition (between CTL II and Pairings First) also showed no Time*Contingency interaction          
(F 

1, 144
) = 0.74, P =0.40). (b) Comparison of CTL II and Pairings First groups with conditioning and context test 

performed in a more salient context (lit by a visible light and with citrus odor). Reduction in Tone memory 
matched previous result (ratio between CTLII and Pairings First 0.63 vs. 0.66 originally), whereas Context 

memory was similar between the groups, as before. Error bars indicate s.e.m.  
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Supplementary Figure 3 

Defecation gives similar results to freezing for experiments described in Figure 2. 

(a) Contingency degradation in the Intermixed condition with APV infusion in dorsal hippocampus (DH) prior 
to conditioning, as measured by defecation during tone test. (n = 9,9, Mann-Whitney U test, U = 17.5, P = 0.04). 
(b) Impaired contextual aversive memory, as measured by defecation, following APV infusion in DH prior to 

conditioning (n = 9,7, Mann-Whitney U test, U = 9.5, P = 0.018). Error bars indicate s.e.m.  
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Supplementary Figure 4 

Effect of repeated USs depends on contingencies.  

(a) Behavioral data (left) and model simulation (right) for conditioning with 15, and 21 CS-US pairings (n=9, 
7). Adding further shocks paired with the same tone CS (21 pairings in total) did not reduce tone memory 
strength. (b) Behavioral data (left) and model simulation (right) for the cover stimulus effect. Signaling shocks 
with a second CS (in this case a flashing light), instead of giving unsignaled shocks attenuates contingency 
degradation (comparison between Pairings First and Cover Stimulus groups, n = 18, 12, unpaired sample t-test, 
t

28 = 2.42, * P = 0.022) Error bars indicate s.e.m. 
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Supplementary Figure 5 

Location of the optical fiber tips for optogenetic experiments.  
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Supplementary Figure 6 

Location of the electrode tips for electrophysiological experiments. 
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Supplementary Figure 7 

Effects of contingency on amygdala LFP potentiation. 

(a) Example traces before, and after conditioning for a representative animal each in the Control II group (left) 
and Pairings First group (right). Red arrows indicate the peak depolarization. (b) Averaged peak depolarizations 
in the CTL II and Pairings First groups before (Habituation), and after (LTM) conditioning. There was a 
marginally significant interaction between time and contingency (n=10, 8, repeated measures ANOVA, F

1,16 = 
4.30, P=0.055), and a simple effects analysis showed significant potentiation of the LFP response in the CTL II, 
but not the Pairings First condition (F

1,16 = 18.0, P = 0.001 and F
1,16 = 1.022, P = 0.33), further indicating that 

conditioning differentially effects synaptic processing depending on contingency. Error bars indicate s.e.m.  
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Supplementary Figure 8 

Comparison of SLM to behavioral results for experiments described in Figure 1. 

Direct comparison of behavioral data (top panel) and SLM (bottom panel) for experiment 1. Error bars indicate 
s.e.m. 
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Supplementary Figure 9 

The graph structures used for SLM, extended to include a second discrete variable. 
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Supplementary Figure 10 

SLM’s predictions for further conditioning phenomena. 

(a) Cover stimulus effect: Replacing unsignaled USs by USs signaled by a second discrete cue (e.g. a light) 

reverses the effects of contingency degradation. (b) Overshadowing: Conditioning to a single cue (Tone) is 

reduced if it is trained in compound with a second cue (Light). (c) Recovery from overshadowing: Unreinforced 

presentations of the overshadowing second cue (Light) restores the level of responding to the first cue. (d) 

Blocking: Initial conditioning to a Light reduces subsequent conditioning to the Tone when the Tone is 

conditioned in compound with the Light.  
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Supplementary Figure 11 

Graphical illustration of the fits of some of the different models compared. 

(a) Behavioral Data. (b) Bayesian model that learned both structure and parameters (SPLM). (c) Bayesian 
model that learned parameters using Graph 6 (from Fig. 5a) and the best Beta priors for edge parameters. (d) 
Van Hamme and Wasserman’s extension of the Rescorla-Wagner model. 
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Model
MSE

s.e. of MSE for hippoampus
Parameters

the MSE APV injection
(% freezing squared)

Structure Learning (SLM) 13.44 0.0054 34.03 2
Parameter Learning (PLM) 20.80 0.024 245.64 8
SLM no Background 17.28 0.057 51.31 3
PLM no Background 34.69 0.023 201.87 6
SLM Linear 21.66 0.086 192.29 2
SOCR with Background 30.89 - 440.66 7
HW-RW with Background 47.66 - 234.61 11
SOCR 32.45 - 292.53 6
HW-RW 67.06 - 848.88 8

Supplementary Table 1: Comparison of model fits. Mean squared error (MSE) for the best
fit of each model, followed by the standard error of the MSE, and the error of the model in
predicting the results of hippocampal interventions, with each value representing percentage
freezing squared. The final column lists the number of free parameters (excluding the two
scaling parameters).

Model BIC
Adjusted R2 Adjusted R2

Context Tone

SLM 88.82 0.87 0.79
SLM no Background 99.47 0.74 0.73
SLM linear 102.66 0.68 0.93
SPLM 110.54 0.79 0.71
PLM 121.69 0.53 0.65
SOCR 127.85 0.63 0.78
HW-RW 155.64 -0.32 0.17

Supplementary Table 2: Bayesian Information Criterion (BIC) and adjusted R-squared values
for the different models. For BIC the number of data points was 29, and the number of
parameters was the number of model parameters plus the two scaling parameters. R-squared
values were adjusted by the number of model parameters plus 1 scaling parameter.
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Training protocol 2*U 3*U 6*U 10*U 15*U 2*U +1*E 3*U+1*E
n= 7 7 7 5 10 6 7

Training protocol 2*P 3*P 6*P 10*P 15*P 21*P
n= 6 25 8 8 9 7
including with CS test only - 3 - - -

Training protocol 3*P+3*U 3*P+6*U 3*P+9*U 3*P+12*U Intermixed 12*U+3*P
n= 12 10 12 18 17 16
including with CS test only 3 2 3 - - -

Supplementary Table 3: Group sizes for the different conditioning protocols.

Experiment 1
Tone Context
F statistic p value F statistic p value

Interaction F1,71 = 0.4 0.75 F1,71 = 0.5 0.68
Main effect for test order F1,71 = 0.53 0.47 F1,71 = 0.16 0.60

All experiments with varied test order
Tone Context
F statistic p value F statistic p value

Interaction F1,116 = 0.35 0.93 F1,116 = 0.76 0.62
Main effect for test order F1,116 = 0.24 0.62 F1,116 = 2.83 0.096

Supplementary Table 4: The order of the CS and Context tests didn’t significantly affect
freezing scores either for the groups in Experiment 1, or across all the different conditioning
protocols where the order of the testing was varied. Testing order was varied for all protocols
except when only CS-US pairings were given. For those, the context test was always given
first to get the best possible measure of the overshadowing effect. Analysis using Two-way
ANOVA, with the levels of the first factor being the different conditioning protocols.
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Group
Latency HAB Latency LTM Amplitude HAB Amplitude LTM as % from HAB

(ms) (µV) (µV)
Control II 14.06 ± 1.23 14.44 ± 1.41 7.57 ± 1.40 224.34 ± 37.94
Pairings First 13.83 ± 1.09 13.86 ± 1.05 9.35 ± 1.83 122.46. ± 13.25

Supplementary Table 5: There was no statistically significant effect of group or conditioning
on A-LFP latencies (p values for main effects and interaction > 0.7), or between average
amplitudes during habituation between groups (p > 0.4). However, the increase (as percentage
baseline) in A-LFP amplitude amplitude following conditioning was significantly higher in the
100% contingency group Control II (p = 0.028).
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Experiment 1-no manipulation
Tone Context
F statistic p value F statistic p value

Interaction F1,75 = 1.63 0.21 F1,75 = 6.44 0.013
Main effect for contingency F1,75 = 18.02 0.00006 F1,75 = 3.26 0.074
Main effect for spacing of CS-US pairings F1,75 = 1.35 0.25 F1,75 = 8.22 0.005
Simple main effect for contingency with pairings spaced F1,75 = 15.00 0.0002 F1,75 = 14.37 0.0003
Simple main effect for contingency with pairings massed F1,75 = 4.48 0.038 F1,75 = 0.00008 0.82
Simple main effect for spacing with 100% contingency F1,75 = 3.35 0.071 F1,75 = 10.65 0.001
Simple main effect for spacing with 20% contingency F1,75 = 0.006 0.94 F1,75 = 0.0004 0.63

Experiment 2-APV infusions (Fig. 2b,c)
Tone Context
F statistic p value F statistic p value

Interaction F1,32 = 0.07 0.79 F1,32 = 0.38 0.54
Main effect for contingency F1,32 = 11.98 0.0015 F1,32 = 0.55 0.46
Main effect for drug F1,32 = 0.59 0.44 F1,32 = 9.47 0.0043

Experiment 2-APV infusions (Fig. 2d,e)

Tone Context
t statistic p value t statistic p value
t16 = 2.14 0.048 t14 = 2.31 0.037

Experiment 3-optogenetic inactivation
Tone Context
F statistic p value F statistic p value

Interaction F1,29 = 0.28 0.6 F1,29 = 4.3903 0.045
Main effect for laser treatment F1,29 = 11.41 0.0021 F1,29 = 0.0297 0.86
Main effect for spacing of CS-US pairings F1,29 = 0.092 0.76 F1,29 = 1.79 0.19
Simple main effect for laser with pairings spaced F1,29 = 4.4537 0.044 F1,29 = 2.03 0.17
Simple main effect for laser with pairings massed F1,29 = 7.0165 0.013 F1,29 = 2.37 0.13

Experiment 4
LFP potentiation Tone
t statistic p value t statistic p value
t11.1 = 2.54 0.028 t11.0 = 3.07 0.011

Supplementary Table 6: F and p values from Two-way ANOVA comparisons for Experiments
1-3 and t statistics for Experiments 2 and 4.
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Experiment 1-no manipulation
Tone Context

% freezing
CTL I 52.22± 4.69 3.22± 0.91
CTLII 40.79± 4.14 24.53± 5.50
Intermixed 26.33± 4.41 29.73± 6.06
Pairings First 26.86± 5.34 26.14± 5.94

Experiment 2-APV infusions
Tone Context

% freezing
Vehicle CTLII 40.09± 8.88 12.12± 5.87
Vehicle Pairings First 18.2± 5.55 8.04± 2.31
APV CTL II 47.17± 8.64 1.00± 0.422
APV Pairings First 21.66± 5.56 0.63± 0.29
Vehicle Intermixed 19.92± 9.57

(Defecation
5.423± 1.23)

APV CTL I 57.33± 9.62
(Defecation
6.88± 0.73)

APV Intermixed 26.87± 10.46 0.62± 0.22
(Defecation

3.89± 1.10 2.11± 0.70)

Experiment 3-optogenetic inactivation
Tone Context

% freezing
Pairings First/Laser Offset 16.13± 3.64 45.46± 9.38
Pairings Firs/Laser Overlap 40.23± 8.04 26.34± 8.05
Intermixed/LaserOffset 17.51± 5.06 16.51± 6.99
Intermixed/Laser Overlap 35.1± 6.10 32.73± 8.61

Experiment 4-Electrophysiology
Tone

% freezing
Control II 35.45± 7.894
Pairings Firs 9.87± 2.66

Cover Stimulus 48.04± 7.15

Supplementary Table 7: Mean ± standard error freezing (and defecation) scores.
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Structure learning
model

α =
0.809

ρ =
0.646

Structure & param-
eter learning model

a1 =
28.620

b1 =
0.239

a2 =
5.407

b2 =
0.173

a3 =
28.034

b3 =
2.416

a4 =
23.422

b4 =
3.108

ρ =
0.782

Parameter learning
model

a1 =
5.968

b1 =
0.766

a2 =
1.058

b2 =
0.372

a3 =
0.214

b3 =
0.140

a4 =
0.018

b4 =
3.267

Extended Com-
parator Hypothesis

s1 =
0.865

s2 =
0.862

s3 =
0.679

k1 =
0.05

k2 =
0.551

k3 =
1.00

Extended Rescorla-
Wagner model

Ta1 =
0.980

Ta2 =
0.000

Tb1 =
0.468

Tb2 =
0.005

Ca1 =
0.972

Ca2 =
−0.158

Cb1 =
0.857

Cb2 =
0.004

Supplementary Table 8: Best fit parameters for Bayesian and Associative models.
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Supplementary Modeling

Stationarity

Our Bayesian models assume that trials come from a stationary process and therefore ignore
trial order effects. This is a good match for our data where we only see weak ordering effects,
and is a suitable strategy for learning the structure of the environment, since the presence or
absence of a predictive relationship between two variables would tend to be a stable property
over time. On the other hand the exact strength of a relationship might change over time, and
learning the parameters that represent this strength by assuming that the underlying state of
the world is dynamic could give rise to strong trial ordering effects (52). An interplay between
structure and parameter learning at different time points could yield an optimal strategy for
exploring the environment, and give rise to weaker or stronger trial order effects, depending
on the particulars of the learning environment.

Temporal representation

The most straight-forward temporal discretization of the experiments assigns one time bin to
each trial, such that the time length for each temporal unit is 2 mins. This corresponds to
counting each US as 1 event where the CS is either present or absent. The approximately two
minutes each animal spent outside the conditioning chamber, but before being returned to the
home cage was also counted as 1 event. when only the Background, but not the other stimuli
were present. Since the 30s tone CS was only present for a fourth of the two minute duration
of tone-shock pairing trials, the remaining fractional time intervals, as well as the one minute
’half’ trial after the last US, were added up, and the integer value of this sum counted towards
the number of trials with context present and CS and US absent (i.e. added to the count of the
[1 1 0 0] vectors).Including these fractional counts improved all Bayesian model fits slightly,
but didn’t affect the final order of the fits.

Since USs always arrived at the end of the CS in our experiments, we didn’t consider potential
effects of ambiguity arising by the timing of the US during the CS, which is a characteristic
of the totally random control procedure, and has been suggested to slow conditioning to a CS
(53)

Alternative formulations of the Bayesian models

An alternative for the Bayesian models without a Background variable can be implemented
with the three variables X2, X3, and X4, s.t.

P (X4 = 1|Pa(X4)) = 1−

 ∏
Xi∈Pa(X4)

(1− ωi,4)
xi

 (1)
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or if X4 has no parents, or when all its parents are absent, then

P (X4 = 1) = ωpX4
(2)

where ωpX4
has a prior Beta distribution. This formulation gave a higher MSE then SLM

and SPLM, but a better fit than the other models. Removing the Background variable from
PLM turns it into a model that is similar to simple cue competition models, and substantially
decreases the model’s ability to fit the data (Supplementary Table 1).

A further alternative is to replace the noisy-OR generating function with a thresholded linear
function (see SLM linear in Supplementary Table 1) , such that

P (X4 = 1|Pa(X4)) = max(1,
∑

i|Xi∈Pa(X4)

ωi,4 ·Xi) (3)

Extending SLM to model other behavioral phenomena

We tested if SLM was compatible with previously documented conditioning phenomena involv-
ing ambiguous cue-outcome associations, by extending the model to include a further variable
representing an additional environmental stimulus (such as a light). We extended the number
of graph structures to include the relevant configurations (Supplementary Fig. 9) , but other-
wise left the model unchanged, including the hyperparameter P (G1), and the scaling factors
previously fitted to our behavioral data. SLM made accurate predictions, qualitatively match-
ing previous data for the cover stimulus effect, overshadowing, recovery from overshadowing
and blocking (Supplementary Fig. 10). The original formulation of SLM can also explain par-
tial reinforcement and latent inhibition effects for CS-US pairings, as well as for context-US
pairings.

Associative models

Representing experiments

To allow maximum flexibility for the associative models, we used two temporal discretization
parameters, one for the CS duration, tCS and one for when the CS was not present, tC . We re-
stricted the relationship between these two parameters such that the discretized representation
remained faithful to the original temporal structure. In particular we imposed

3 ∗ tC ≤ tCS ≤ 3 ∗ (tC + 2)

These discretization parameters were not included in the parameter count in the model com-
parison, Models were implemented as described in references (7) and (8), and parameters fitted
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by minimizing MSE with an interior-point algorithm using MATLAB’s fmincon function. As-
sociative strengths given by the model were converted to freezing scores in the same way as for
the Bayesian models (multiplication by a scalar through simple linear regression, separately
for the Context and the CS).

Van Hamme and Wasserman’s extension of the Rescorla-Wagner model required fitting 4 learn-
ing rate parameters each for the context and the tone (8 in total) that were constrained to
lie in the interval [0, 1] or [−1, 0], as specified by the model. λ was taken to be one, since the
multiplicative scaling when converting to freezing scores ensured that the value of λ didn’t
influence the model’s fit. We fit 6 parameters for the SOCR model: 3 learning rate parame-
ters (s1, s2 and s3), the extinction parameter k1, and the comparator parameters k2 and k3.
The learning rates and comparator parameters were constrained to lie in [0, 1], while k1 was
required to lie in [0.05, 1] to ensure a realistic model that can account for extinction/partial
reinforcement effects. We ran the optimization process at least 10 times from different ran-
dom starting points, separately for each permitted combination of the integer-valued temporal
discretization parameters with Ct ≤ 30. We found that minimums for each such combination
were consistent across most of the the runs, with the optimization terminating at one of the
few different observed values. We also extended these models by adding a ’Background’ cue,
to enable factorial model comparison and a better understanding of the importance of such a
variable. For HW-RW this meant adding further 4 learning rate parameters, and for SOCR a
single extra learning rate parameter.

Modeling neural interventions

To model hippocampal inactivations, the learning rates for the context were set to zero. Amyg-
dala inactivation during the US were modeled by excluding trials with inactivation from the
trial counts (such that they counted neither towards the reinforced, nor the unreinforced trials).

Alternative formulations

In the extended RW model, we tried replacing the linear sum in the prediction error terms

λ− (VContext + VCS)

and

0− (VContext + VCS)

by the or function
λ− (Vcontext + VCS − VContext · VCS)

and
0− (VContext + VCS − VContext · VCS)
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to see if the linear vs or formulation were important in the differences we found between models.
However, this change didn’t significantly improve the fit of the model.
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